On the use of models for high-performance scientific computing applications: an experience report


This paper reports on a four-year project that aims to raise the abstraction level through the use of model-driven engineering (MDE) techniques in the development of scientific applications relying on high-performance computing. The development and maintenance of high-performance scientific computing software is reputedly a complex task. This complexity results from the frequent evolutions of supercomputers and the tight coupling between software and hardware aspects. Moreover, current parallel programming approaches result in a mixing of concerns within the source code. Our approach relies on the use of MDE and consists in defining domain-specific modeling languages targeting various domain experts involved in the development of HPC applications, allowing each of them to handle their dedicated model in a both user-friendly and hardware-independent way. The different concerns are separated thanks to the use of several models as well as several modeling viewpoints on these models. Depending on the targeted execution platforms, these abstract models are translated into executable implementations by means of model transformations. To make all of these effective, we have developed a tool chain that is also presented in this paper. The approach is assessed through a multi-dimensional validation that focuses on its applicability, its expressiveness and its efficiency. To capitalize on the gained experience, we analyze some lessons learned during this project.

Software and System Modeling 17(1): 319-342